Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Theor Biol ; 565: 111470, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: covidwho-2276002

RESUMO

The SARS-CoV-2 coronavirus continues to evolve with scores of mutations of the spike, membrane, envelope, and nucleocapsid structural proteins that impact pathogenesis. Infection data from nasal swabs, nasal PCR assays, upper respiratory samples, ex vivo cell cultures and nasal epithelial organoids reveal extreme variabilities in SARS-CoV-2 RNA titers within and between the variants. Some variabilities are naturally prone to clinical testing protocols and experimental controls. Here we focus on nasal viral load sensitivity arising from the timing of sample collection relative to onset of infection and from heterogeneity in the kinetics of cellular infection, uptake, replication, and shedding of viral RNA copies. The sources of between-variant variability are likely due to SARS-CoV-2 structural protein mutations, whereas within-variant population variability is likely due to heterogeneity in cellular response to that particular variant. With the physiologically faithful, agent-based mechanistic model of inhaled exposure and infection from (Chen et al., 2022), we perform statistical sensitivity analyses of the progression of nasal viral titers in the first 0-48 h post infection, focusing on three kinetic mechanisms. Model simulations reveal shorter latency times of infected cells (including cellular uptake, viral RNA replication, until the onset of viral RNA shedding) exponentially accelerate nasal viral load. Further, the rate of infectious RNA copies shed per day has a proportional influence on nasal viral load. Finally, there is a very weak, negative correlation of viral load with the probability of infection per virus-cell encounter, the model proxy for spike-receptor binding affinity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , RNA Viral/genética , Carga Viral , Teste para COVID-19
2.
Emerg Microbes Infect ; 12(1): e2187245, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-2284307

RESUMO

Over 3 billion doses of inactivated vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been administered globally. However, our understanding of the immune cell functional transcription and T cell receptor (TCR)/B cell receptor (BCR) repertoire dynamics following inactivated SARS-CoV-2 vaccination remains poorly understood. Here, we performed single-cell RNA and TCR/BCR sequencing on peripheral blood mononuclear cells at four time points after immunization with the inactivated SARS-CoV-2 vaccine BBIBP-CorV. Our analysis revealed an enrichment of monocytes, central memory CD4+ T cells, type 2 helper T cells and memory B cells following vaccination. Single-cell TCR-seq and RNA-seq comminating analysis identified a clonal expansion of CD4+ T cells (but not CD8+ T cells) following a booster vaccination that corresponded to a decrease in the TCR diversity of central memory CD4+ T cells and type 2 helper T cells. Importantly, these TCR repertoire changes and CD4+ T cell differentiation were correlated with the biased VJ gene usage of BCR and the antibody-producing function of B cells post-vaccination. Finally, we compared the functional transcription and repertoire dynamics in immune cells elicited by vaccination and SARS-CoV-2 infection to explore the immune responses under different stimuli. Our data provide novel molecular and cellular evidence for the CD4+ T cell-dependent antibody response induced by inactivated vaccine BBIBP-CorV. This information is urgently needed to develop new prevention and control strategies for SARS-CoV-2 infection. (ClinicalTrials.gov Identifier: NCT04871932).


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Leucócitos Mononucleares , SARS-CoV-2 , Receptores de Antígenos de Linfócitos B , Imunização Secundária , Análise de Sequência de RNA , Anticorpos Antivirais
3.
J Theor Biol ; 555: 111293, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: covidwho-2105496

RESUMO

We develop a lattice-based, hybrid discrete-continuum modeling framework for SARS-CoV-2 exposure and infection in the human lung alveolar region, or parenchyma, the massive surface area for gas exchange. COVID-19 pneumonia is alveolar infection by the SARS-CoV-2 virus significant enough to compromise gas exchange. The modeling framework orchestrates the onset and progression of alveolar infection, spatially and temporally, beginning with a pre-immunity baseline, upon which we superimpose multiple mechanisms of immune protection conveyed by interferons and antibodies. The modeling framework is tunable to individual profiles, focusing here on degrees of innate immunity, and to the evolving infection-replication properties of SARS-CoV-2 variant strains. The model employs partial differential equations for virion, interferon, and antibody concentrations governed by diffusion in the thin fluid coating of alveolar cells, species and lattice interactions corresponding to sources and sinks for each species, and multiple immune protections signaled by interferons. The spatial domain is a two-dimensional, rectangular lattice of alveolar type I (non-infectable) and type II (infectable) cells with a stochastic, species-concentration-governed, switching dynamics of type II lattice sites from healthy to infected. Once infected, type II cells evolve through three phases: an eclipse phase during which RNA copies (virions) are assembled; a shedding phase during which virions and interferons are released; and then cell death. Model simulations yield the dynamic spread of, and immune protection against, alveolar infection and viral load from initial sites of exposure. We focus in this paper on model illustrations of the diversity of outcomes possible from alveolar infection, first absent of immune protection, and then with varying degrees of four known mechanisms of interferon-induced innate immune protection. We defer model illustrations of antibody protection to future studies. Results presented reinforce previous recognition that interferons produced solely by infected cells are insufficient to maintain a high efficacy level of immune protection, compelling additional mechanisms to clear alveolar infection, such as interferon production by immune cells and adaptive immunity (e.g., T cells). This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Interferons , Antivirais , Pulmão , Imunidade Inata , RNA
4.
J Theor Biol ; 557: 111334, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: covidwho-2086502

RESUMO

The COVID-19 pandemic has underscored the need to understand the dynamics of SARS-CoV-2 respiratory infection and protection provided by the immune response. SARS-CoV-2 infections are characterized by a particularly high viral load, and further by the small number of inhaled virions sufficient to generate a high viral titer in the nasal passage a few days after exposure. SARS-CoV-2 specific antibodies (Ab), induced from vaccines, previous infection, or inhaled monoclonal Ab, have proven effective against SARS-CoV-2 infection. Our goal in this work is to model the protective mechanisms that Ab can provide and to assess the degree of protection from individual and combined mechanisms at different locations in the respiratory tract. Neutralization, in which Ab bind to virion spikes and inhibit them from binding to and infecting target cells, is one widely reported protective mechanism. A second mechanism of Ab protection is muco-trapping, in which Ab crosslink virions to domains on mucin polymers, effectively immobilizing them in the mucus layer. When muco-trapped, the continuous clearance of the mucus barrier by coordinated ciliary propulsion entrains the trapped viral load toward the esophagus to be swallowed. We model and simulate the protection provided by either and both mechanisms at different locations in the respiratory tract, parametrized by the Ab titer and binding-unbinding rates of Ab to viral spikes and mucin domains. Our results illustrate limits in the degree of protection by neutralizing Ab alone, the powerful protection afforded by muco-trapping Ab, and the potential for dual protection by muco-trapping and neutralizing Ab to arrest a SARS-CoV-2 infection. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Anticorpos Antivirais , Sistema Respiratório , Mucinas
5.
Journal of theoretical biology ; 2022.
Artigo em Inglês | EuropePMC | ID: covidwho-2044906

RESUMO

We develop a lattice-based, hybrid discrete-continuum modeling framework for SARS-CoV-2 exposure and infection in the human lung alveolar region, or parenchyma, the massive surface area for gas exchange. COVID-19 pneumonia is alveolar infection by the SARS-CoV-2 virus significant enough to compromise gas exchange. The modeling framework orchestrates the onset and progression of alveolar infection, spatially and temporally, beginning with a pre-immunity baseline, upon which we superimpose multiple mechanisms of immune protection conveyed by interferons and antibodies. The modeling framework is tunable to individual profiles, focusing here on degrees of innate immunity, and to the evolving infection-replication properties of SARS-CoV-2 variant strains. The model employs partial differential equations for virion, interferon, and antibody concentrations governed by diffusion in the thin fluid coating of alveolar cells, species and lattice interactions corresponding to sources and sinks for each species, and multiple immune protections signaled by interferons. The spatial domain is a two-dimensional, rectangular lattice of alveolar type I (non-infectable) and type II (infectable) cells with a stochastic, species-concentration-governed, switching dynamics of type II lattice sites from healthy to infected. Once infected, type II cells evolve through three phases: an eclipse phase during which RNA copies (virions) are assembled;a shedding phase during which virions and interferons are released;and then cell death. Model simulations yield the dynamic spread of, and immune protection against, alveolar infection and viral load from initial sites of exposure. We focus in this paper on model illustrations of the diversity of outcomes possible from alveolar infection, first absent of immune protection, and then with varying degrees of four known mechanisms of interferon-induced innate immune protection. We defer model illustrations of antibody protection to future studies. Results presented reinforce previous recognition that interferons produced solely by infected cells are insufficient to maintain a high efficacy level of immune protection, compelling additional mechanisms to clear alveolar infection, such as interferon production by immune cells and adaptive immunity (e.g., T cells). This manuscript was submitted as part of a theme issue on “Modelling COVID-19 and Preparedness for Future Pandemics”.

6.
Brain Behav Immun Health ; 24: 100491, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: covidwho-1936083

RESUMO

Background: As the coronavirus disease 2019 (COVID-19) pandemic continues, there has been a growing interest in the chronic sequelae of COVID-19. Neuropsychiatric symptoms are observed in the acute phase of infection, but there is a need for accurate characterization of how these symptoms evolve over time. Additionally, African American populations have been disproportionately affected by the COVID-19 pandemic. The COVID-19 Neurological and Molecular Prospective Cohort Study in Georgia (CONGA) was established to investigate the severity and chronicity of these neurologic findings over the five-year period following infection. Methods: The CONGA study aims to recruit COVID-19 positive adult patients in Georgia, United States from both the inpatient and outpatient setting, with 50% being African American. This paper reports our preliminary results from the baseline visits of the first 200 patients recruited who were on average 125 days since having a positive COVID-19 test. The demographics, self-reported symptoms, comorbidities, and quantitative measures of depression, anxiety, smell, taste, and cognition were analyzed. Cognitive measures were compared to demographically matched controls. Blood and mononuclear cells were drawn and stored for future analysis. Results: Fatigue was the most reported symptom in the study cohort (68.5%). Thirty percent of participants demonstrated hyposmia and 30% of participants demonstrated hypogeusia. Self-reported neurologic dysfunction did not correlate with dysfunction on quantitative neurologic testing. Additionally, self-reported symptoms and comorbidities were associated with depression and anxiety. The study cohort performed worse on cognitive measures compared to demographically matched controls, and African American patients scored lower compared to non-Hispanic White patients on all quantitative cognitive testing. Conclusion: Our results support the growing evidence that there are chronic neuropsychiatric symptoms following COVID-19 infection. Our results suggest that self-reported neurologic symptoms do not appear to correlate with associated quantitative dysfunction, emphasizing the importance of quantitative measurements in the complete assessment of deficits. Self-reported symptoms are associated with depression and anxiety. COVID-19 infection appears to be associated with worse performance on cognitive measures, though the disparity in score between African American patients and non-Hispanic White patients is likely largely due to psychosocial, physical health, and socioeconomic factors.

7.
Nature ; 602(7898): 664-670, 2022 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1616991

RESUMO

The recently emerged SARS-CoV-2 Omicron variant encodes 37 amino acid substitutions in the spike protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody-based therapeutics. Here we show that the Omicron RBD binds to human ACE2 with enhanced affinity, relative to the Wuhan-Hu-1 RBD, and binds to mouse ACE2. Marked reductions in neutralizing activity were observed against Omicron compared to the ancestral pseudovirus in plasma from convalescent individuals and from individuals who had been vaccinated against SARS-CoV-2, but this loss was less pronounced after a third dose of vaccine. Most monoclonal antibodies that are directed against the receptor-binding motif lost in vitro neutralizing activity against Omicron, with only 3 out of 29 monoclonal antibodies retaining unaltered potency, including the ACE2-mimicking S2K146 antibody1. Furthermore, a fraction of broadly neutralizing sarbecovirus monoclonal antibodies neutralized Omicron through recognition of antigenic sites outside the receptor-binding motif, including sotrovimab2, S2X2593 and S2H974. The magnitude of Omicron-mediated immune evasion marks a major antigenic shift in SARS-CoV-2. Broadly neutralizing monoclonal antibodies that recognize RBD epitopes that are conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Deriva e Deslocamento Antigênicos/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Testes de Neutralização , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Deriva e Deslocamento Antigênicos/genética , Vacinas contra COVID-19/imunologia , Linhagem Celular , Convalescença , Epitopos de Linfócito B/imunologia , Humanos , Evasão da Resposta Imune , Camundongos , SARS-CoV-2/química , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Vesiculovirus/genética
8.
Science ; 373(6555): 648-654, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: covidwho-1295161

RESUMO

A novel variant of concern (VOC) named CAL.20C (B.1.427/B.1.429), which was originally detected in California, carries spike glycoprotein mutations S13I in the signal peptide, W152C in the N-terminal domain (NTD), and L452R in the receptor-binding domain (RBD). Plasma from individuals vaccinated with a Wuhan-1 isolate-based messenger RNA vaccine or from convalescent individuals exhibited neutralizing titers that were reduced 2- to 3.5-fold against the B.1.427/B.1.429 variant relative to wild-type pseudoviruses. The L452R mutation reduced neutralizing activity in 14 of 34 RBD-specific monoclonal antibodies (mAbs). The S13I and W152C mutations resulted in total loss of neutralization for 10 of 10 NTD-specific mAbs because the NTD antigenic supersite was remodeled by a shift of the signal peptide cleavage site and the formation of a new disulfide bond, as revealed by mass spectrometry and structural studies.


Assuntos
COVID-19/virologia , Evasão da Resposta Imune , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Substituição de Aminoácidos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Vacina BNT162 , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Mutação , Testes de Neutralização , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química
9.
Cell ; 184(9): 2332-2347.e16, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: covidwho-1135276

RESUMO

The SARS-CoV-2 spike (S) glycoprotein contains an immunodominant receptor-binding domain (RBD) targeted by most neutralizing antibodies (Abs) in COVID-19 patient plasma. Little is known about neutralizing Abs binding to epitopes outside the RBD and their contribution to protection. Here, we describe 41 human monoclonal Abs (mAbs) derived from memory B cells, which recognize the SARS-CoV-2 S N-terminal domain (NTD) and show that a subset of them neutralize SARS-CoV-2 ultrapotently. We define an antigenic map of the SARS-CoV-2 NTD and identify a supersite (designated site i) recognized by all known NTD-specific neutralizing mAbs. These mAbs inhibit cell-to-cell fusion, activate effector functions, and protect Syrian hamsters from SARS-CoV-2 challenge, albeit selecting escape mutants in some animals. Indeed, several SARS-CoV-2 variants, including the B.1.1.7, B.1.351, and P.1 lineages, harbor frequent mutations within the NTD supersite, suggesting ongoing selective pressure and the importance of NTD-specific neutralizing mAbs for protective immunity and vaccine design.


Assuntos
Antígenos Virais/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/virologia , Cricetinae , Mapeamento de Epitopos , Variação Genética , Modelos Moleculares , Mutação/genética , Testes de Neutralização , Domínios Proteicos , RNA Viral/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/ultraestrutura
10.
Science ; 370(6521): 1208-1214, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: covidwho-913668

RESUMO

We developed a de novo protein design strategy to swiftly engineer decoys for neutralizing pathogens that exploit extracellular host proteins to infect the cell. Our pipeline allowed the design, validation, and optimization of de novo human angiotensin-converting enzyme 2 (hACE2) decoys to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The best monovalent decoy, CTC-445.2, bound with low nanomolar affinity and high specificity to the receptor-binding domain (RBD) of the spike protein. Cryo-electron microscopy (cryo-EM) showed that the design is accurate and can simultaneously bind to all three RBDs of a single spike protein. Because the decoy replicates the spike protein target interface in hACE2, it is intrinsically resilient to viral mutational escape. A bivalent decoy, CTC-445.2d, showed ~10-fold improvement in binding. CTC-445.2d potently neutralized SARS-CoV-2 infection of cells in vitro, and a single intranasal prophylactic dose of decoy protected Syrian hamsters from a subsequent lethal SARS-CoV-2 challenge.


Assuntos
Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Receptores Virais/antagonistas & inibidores , Proteínas Recombinantes/farmacologia , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Animais , Antivirais/química , Antivirais/uso terapêutico , Cricetinae , Microscopia Crioeletrônica , Evolução Molecular Direcionada/métodos , Ligação Proteica , Domínios Proteicos , Engenharia de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapêutico , Glicoproteína da Espícula de Coronavírus/química
11.
bioRxiv ; 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: covidwho-721065

RESUMO

There is an urgent need for the ability to rapidly develop effective countermeasures for emerging biological threats, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the ongoing coronavirus disease 2019 (COVID-19) pandemic. We have developed a generalized computational design strategy to rapidly engineer de novo proteins that precisely recapitulate the protein surface targeted by biological agents, like viruses, to gain entry into cells. The designed proteins act as decoys that block cellular entry and aim to be resilient to viral mutational escape. Using our novel platform, in less than ten weeks, we engineered, validated, and optimized de novo protein decoys of human angiotensin-converting enzyme 2 (hACE2), the membrane-associated protein that SARS-CoV-2 exploits to infect cells. Our optimized designs are hyperstable de novo proteins (∼18-37 kDa), have high affinity for the SARS-CoV-2 receptor binding domain (RBD) and can potently inhibit the virus infection and replication in vitro. Future refinements to our strategy can enable the rapid development of other therapeutic de novo protein decoys, not limited to neutralizing viruses, but to combat any agent that explicitly interacts with cell surface proteins to cause disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA